Show simple item record

dc.contributor.advisorSutarman
dc.contributor.advisorDarnius, Open
dc.contributor.authorWulandari, Sri
dc.date.accessioned2022-12-22T08:23:54Z
dc.date.available2022-12-22T08:23:54Z
dc.date.issued2012
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/76836
dc.description.abstractRegression analysis is used to determine the relationship between variables. One of methods for estimating the parameters in model analysis is ordinary least square (OLS). If there are outliers, OLS is not efficient again so the suitable method for problems of outliers is robust regression method. Outlier is data that inconsistent with the pattern and located away from the data center, can be detected with graphical method and determine the leverage value, DfFITS and Cook’s Distance. Least trimmed squares (LTS) is an estimating method of robust regression that using a fitting concept of OLS to minimize the sum square error. M estimator is a method to overcome the outliers and can use Huber function in estimating the regression parameter. The purpose of this study is comparing two methods of robust regression, those are LTS and M estimator with ordinary least squares method in overcoming the problems of outlier. The conclutions of it are LTS is the best method because it can overcome the outliers and give a good estimation in coeficient of regression, and so produce the smallest mean square error. Then, M estimator also gives a good estimation and produce smaller mean square error than OLS.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectordinary least squareen_US
dc.subjectrobust regressionen_US
dc.subjectleast trimmed squares estimatoren_US
dc.subjectM estimatoren_US
dc.titlePerbandingan Metode Least Trimmed Squares dan Penaksir M dalam Mengatasi Permasalahan Data Pencilanen_US
dc.typeThesisen_US
dc.identifier.nimNIM080803006
dc.identifier.nidnNIDN0026106305
dc.identifier.nidnNIDN0014106403
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages93 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record