Show simple item record

dc.contributor.advisorTarigan, Gim
dc.contributor.advisorBangun, Pengarapen
dc.contributor.authorSari, Rika Listya
dc.date.accessioned2022-12-23T02:00:56Z
dc.date.available2022-12-23T02:00:56Z
dc.date.issued2015
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/76957
dc.description.abstractIn forming a linear regression model, there are several classical assumptions that must be satisfied. One of the classical assumptions states there is not exist autocorrelation that occurs between disturbance or error. If autocorrelation occured in linear regression model, the regression coefficient estimators no longer have minimum variance so that the method necessary to overcome them. Durbin two-stage and Theil-Nagar method are several methods that can be used to solve autocorrelation problem. In the research, Theil-Nagar method gives the better results compared to Durbin two-stage method because the resulting value of the autocorrelation coefficient have been close to zero.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAutocorrelationen_US
dc.subjectDurbin Two-Stageen_US
dc.subjectTheil-Nagaren_US
dc.titlePerbandingan Metode Dua Tahap Durbin dan Theil-Nagar dalam Mengatasi Masalah Autokorelasi.en_US
dc.typeThesisen_US
dc.identifier.nimNIM100803016
dc.identifier.nidnNIDN0002025505
dc.identifier.nidnNIDN0015085603
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages55 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record