Show simple item record

dc.contributor.advisorDarnius, Open
dc.contributor.advisorTarigan, Gim
dc.contributor.authorSharah, Siti
dc.date.accessioned2022-12-23T02:23:56Z
dc.date.available2022-12-23T02:23:56Z
dc.date.issued2014
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/76986
dc.description.abstractThis study aims to look at the factors that become identifier in the field of household welfare and how these models are built to a high enough classification accuracy. The model used is Bagging MARS. The results of this study showed that of the nine variables studied, seven of which have contributed to the model, the number of household members, household drinking water sources, education of household head, employment status of household head, gender of household head, age of head of household stairs, and main industry of household heads. While the classification accuracy produced by MARS method is 94.08%. The application of bagging technique can improve the classification of 95.04%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMARSen_US
dc.subjectBaggingen_US
dc.subjectWelfareen_US
dc.subjectClassificationen_US
dc.titlePemodelan Klasifikasi Kesejahteraan Rumah Tangga dengan MARS, Suatu Studi Kasus di Kota Medanen_US
dc.typeThesisen_US
dc.identifier.nimNIM100803054
dc.identifier.nidnNIDN0014106403
dc.identifier.nidnNIDN0002025505
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages98 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record