Show simple item record

dc.contributor.advisorDarnius, Open
dc.contributor.advisorManurung, Asima
dc.contributor.authorSembiring, Andos Niki S M
dc.date.accessioned2022-12-23T02:43:01Z
dc.date.available2022-12-23T02:43:01Z
dc.date.issued2015
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/77009
dc.description.abstractRegression analysis was used to determine the relationship between variables. One of method parameter estimator in the regression model is ordinary least squares (OLS). In this study used four groups of data models with different outlier layout with five repetitions of each model. Then, this paper aims to compare the two methods, namely robust regression of least trimmed squares (LTS) and Sestimators. In the outliers are located amid robust regression line regression LTSestimators provides better results than the S-estimators, otherwise S-estimators is better at outliers are located end. The comparison criteria using the average squared residual.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectOrdinary Least Squaresen_US
dc.subjectOutliersen_US
dc.subjectRobust Regressionen_US
dc.subjectLeast Trimmed of Squaresen_US
dc.titlePerbandingan Metode Least Trimmed Squares dan Penduga-S dalam Mengatasi Data Pencilan dengan Simulasi Dataen_US
dc.typeThesisen_US
dc.identifier.nimNIM090803032
dc.identifier.nidnNIDN0014106403
dc.identifier.nidnNIDN0015037310
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages90 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record