Show simple item record

dc.contributor.advisorBangun, Pengarapen
dc.contributor.advisorArriswoyo, Suwarno
dc.contributor.authorSiregar, Ocktavalanni
dc.date.accessioned2022-12-23T02:45:51Z
dc.date.available2022-12-23T02:45:51Z
dc.date.issued2014
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/77011
dc.description.abstractMulticollinearity is a condition in multiple linear regression where between the independent variables are correlated. Multicollinearity resulted in the regression coefficients from multiple regression analysis to be very weak or can’t provide analytical result that represent the characteristic of the relevant independent variables, and resulted the parameter hypothesis tests using the least square method gives result that are not valid. Indication of multicollinearity problems can be detected with variance inflation factor. Two methods can be used to overcome multicollinearity the method of ridge and principal component analysis. Ridge method aims to reduce multicollinearity by determining the bias estimator but has a smaller variance than the variance of multiple linear regression estimator. The principle component analysis aimed to yield new variables (principle component) which orthogonal to each other and reduce data dimension.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.titleStudi Metode Regresi Ridge dan Metode Analisis Komponen Utama dalam Menyelesaikan Masalah Multikolinearitas.en_US
dc.typeThesisen_US
dc.identifier.nimNIM100803011
dc.identifier.nidnNIDN0015085603
dc.identifier.nidnNIDN0021035003
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages82 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record