dc.contributor.advisor | Bangun, Pengarapen | |
dc.contributor.advisor | Arriswoyo, Suwarno | |
dc.contributor.author | Siregar, Ocktavalanni | |
dc.date.accessioned | 2022-12-23T02:45:51Z | |
dc.date.available | 2022-12-23T02:45:51Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/77011 | |
dc.description.abstract | Multicollinearity is a condition in multiple linear regression where between the
independent variables are correlated. Multicollinearity resulted in the regression
coefficients from multiple regression analysis to be very weak or can’t provide
analytical result that represent the characteristic of the relevant independent variables,
and resulted the parameter hypothesis tests using the least square method gives result
that are not valid. Indication of multicollinearity problems can be detected with
variance inflation factor. Two methods can be used to overcome multicollinearity the
method of ridge and principal component analysis. Ridge method aims to reduce
multicollinearity by determining the bias estimator but has a smaller variance than the
variance of multiple linear regression estimator. The principle component analysis
aimed to yield new variables (principle component) which orthogonal to each other
and reduce data dimension. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.title | Studi Metode Regresi Ridge dan Metode Analisis Komponen Utama dalam Menyelesaikan Masalah Multikolinearitas. | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM100803011 | |
dc.identifier.nidn | NIDN0015085603 | |
dc.identifier.nidn | NIDN0021035003 | |
dc.identifier.kodeprodi | KODEPRODI44201#Matematika | |
dc.description.pages | 82 Halaman | en_US |
dc.description.type | Skripsi Sarjana | en_US |