Menaksir Parameter pada Distribusi Eksponensial Bivariat dengan Metode Maksimum Likelihood
dc.contributor.advisor | Harahap, Marwan | |
dc.contributor.advisor | Arriswoyo, Suwarno | |
dc.contributor.author | Pane, Rini Octaviani | |
dc.date.accessioned | 2022-12-23T06:21:56Z | |
dc.date.available | 2022-12-23T06:21:56Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/77210 | |
dc.description.abstract | ABSTRACT Exponential distribution is the distribution of newly introduced Guptu and Kundu in 1999 If there are two random variables (X1, X2) are distributed exponentially with the assumption of independent, then the exponential distribution of two variables or bivariate exponential distribution (density function of the combined odds of (X1, X2)), for x1>0, x2> 0 is: F(x) =α,α(1-e) (1-e) e Maximum Likelihood estimation is one of the most important approach to the assessment in a inferennsi statistics. The basic idea of the maximum likelihood method is to find parameter values that give the possibility (likelihood) are most likely to get the data observed as the estimator In this study the parameters obtained for the bivariate exponential distribution by likelihood is (k+1+1)+ √(k₁₂+ng+ Ng)² + 4 kg Ngg 4₂(1) = (-K2z+1₂+ng)+ √{−kq@q +ng+ng)*+4kq#g@g 2k2 | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.title | Menaksir Parameter pada Distribusi Eksponensial Bivariat dengan Metode Maksimum Likelihood | en_US |
dc.identifier.nim | NIM090823032 | |
dc.identifier.nidn | NIDN0025124602 | |
dc.identifier.nidn | NIDN0021035003 | |
dc.identifier.kodeprodi | KODEPRODI44201#Matematika | |
dc.description.pages | 32 Halaman | en_US |
dc.description.type | Skripsi Sarjana | en_US |
Files in this item
This item appears in the following Collection(s)
-
Undergraduate Theses [1471]
Skripsi Sarjana