Show simple item record

dc.contributor.advisorHarahap, Marwan
dc.contributor.advisorArriswoyo, Suwarno
dc.contributor.authorPane, Rini Octaviani
dc.date.accessioned2022-12-23T06:21:56Z
dc.date.available2022-12-23T06:21:56Z
dc.date.issued2011
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/77210
dc.description.abstractABSTRACT Exponential distribution is the distribution of newly introduced Guptu and Kundu in 1999 If there are two random variables (X1, X2) are distributed exponentially with the assumption of independent, then the exponential distribution of two variables or bivariate exponential distribution (density function of the combined odds of (X1, X2)), for x1>0, x2> 0 is: F(x) =α,α(1-e) (1-e) e Maximum Likelihood estimation is one of the most important approach to the assessment in a inferennsi statistics. The basic idea of the maximum likelihood method is to find parameter values that give the possibility (likelihood) are most likely to get the data observed as the estimator In this study the parameters obtained for the bivariate exponential distribution by likelihood is (k+1+1)+ √(k₁₂+ng+ Ng)² + 4 kg Ngg 4₂(1) = (-K2z+1₂+ng)+ √{−kq@q +ng+ng)*+4kq#g@g 2k2en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.titleMenaksir Parameter pada Distribusi Eksponensial Bivariat dengan Metode Maksimum Likelihooden_US
dc.identifier.nimNIM090823032
dc.identifier.nidnNIDN0025124602
dc.identifier.nidnNIDN0021035003
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages32 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record