Show simple item record

dc.contributor.advisorSutarman
dc.contributor.advisorArriswoyo, Suwarno
dc.contributor.authorPurba, Sunarto Urjoyo
dc.date.accessioned2022-12-28T04:14:53Z
dc.date.available2022-12-28T04:14:53Z
dc.date.issued2011
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/78469
dc.description.abstractThe method of maximum likelihood inference based on the sample, and this method is also one way to assess the normal distribution, the basic idea is to find the maximum likelihood method of parameter values which give the possibility (likelihood) that most large to obtain the observed data as an estimator and its uses to determine the parameters that maximize the likelihood of the sample data. Maximum likelihood estimator is: ),x(f),...,x(f),,x(f)(Ln21θθθθ But if the population distribution is unknown then the maximum likelihood method can not be used. Bayes introduces a method which needs to know the form of initial distributions (priors) of the population known as the Bayes method. Before pulling a sample from a population sometimes obtained information about the parameters to be estimated. This information is then combined with information from the sample to be used in estimating population parameters. Bayes estimator is: f(θ|x1, x2, …, xn) = )x , ,x ,g(x ) :x ,… ,x ,f(xn21n21…en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectBayes Estimationen_US
dc.subjectMaximum Likelihood Estimatesen_US
dc.subjectLimits of Toleranceen_US
dc.titlePenaksiran Parameter dan pada Distribusi Normal Menggunakan Metode Bayes dan Maksimum Likelihood Μ2σen_US
dc.typeThesisen_US
dc.identifier.nimNIM090823005
dc.identifier.nidnNIDN0026106305
dc.identifier.nidnNIDN0021035003
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages44 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record