• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimasi Parameter Μ Dan Σ2 pada Distribusi Eksponensial Tergeneralisir Dua Variabel Menggunakan Fungsi Pembangkit Momen

    View/Open
    Fulltext (848.3Kb)
    Date
    2011
    Author
    Wardhono, Ghazali
    Advisor(s)
    Sembiring, Pasukat
    Sianipar, Pangeran
    Metadata
    Show full item record
    Abstract
    From some distribution, the mean and variance is an important parameter estimates after the parameters distribution are known. From estimates of these parameters we can more easily review, investigate the characteristics, and found all of other measurement parameters such as skewness and kurtosis of these distribution. In estimating these parameters correctly, the most appropriate method used is the moment generating function.Obvious usefulness from the moment generating function is to determine the moment of it’s distribution. If the moment generating function of a random variable exists, the function can be used to transform and find all the moments of these random variables, moment generating function by deriveded to n-times. Can be seen that the first derivative is average and the second derivative is the variance. For random variables X1 and X2 are continuous, then the joint moment generating function is denoted by: 21221121)()(),(221121dxdxxfxfettMxtxtxx+ In this research, distributions will be estimated parameter mean and variance is a new distribution introduced by Gupta and Kundu (1999), named a Generalized Exponential Distribution. If there are two random variables (X1,X2) a Generalized Exponential Distribution with the assumptions are mutually independent, then the Generalized Exponential distribution of two variables (joint probability density function of (X1,X2)), for x1 > 0, x2 > 0 is: ),(21xxF 2122111121)1()1(xxxxeee−−−−−−−−=αααα
    URI
    https://repositori.usu.ac.id/handle/123456789/78514
    Collections
    • Undergraduate Theses [1471]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV