Show simple item record

dc.contributor.advisorHarahap, Marwan
dc.contributor.advisorSebayang, Djakaria
dc.contributor.authorMardhiah, I’syatun
dc.date.accessioned2022-12-29T03:30:03Z
dc.date.available2022-12-29T03:30:03Z
dc.date.issued2011
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/78934
dc.description.abstractThis study is to get a regression equation better than regression equation before for data have outlier. First, check outlier at data, with grafic and looking for residu studenization, leverage value, DfFitS, DfBETAS(s) and Cook’s Distance. And then searching regression equation with Least Trimmed Squares (LTS) method at robust regression, that is with get total of sum minimum kuadrat residu with coverage measured. It will get regression equation with LTS method better than equation before with OLS because LTS can make outlier influence be smaller than before for data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.titleMengatasi Outlier dengan Metode Least Trimmed Squares (Lts) pada Regresi Robusten_US
dc.typeThesisen_US
dc.identifier.nimNIM070823027
dc.identifier.nidnNIDN0025124602
dc.identifier.nidnNIDN0027125103
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages49 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record