dc.contributor.advisor | Sitepu, Henry Rani | |
dc.contributor.advisor | Tarigan, Gim | |
dc.contributor.author | Pasaribu, Marianti Rosanna | |
dc.date.accessioned | 2022-12-29T04:07:33Z | |
dc.date.available | 2022-12-29T04:07:33Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/79000 | |
dc.description.abstract | Multicollinearity is a condition where there is a regression in a very high correlation
between the independent variables. Ridge Regression Analysis and Principal
Component Regression analysis is a method to solve the multicollinearity that occurs
in multiple regression analysis. Ridge Regression Analysis is a method that gives a
relatively small constant bias by multiplying the constant bias on the diagonal identity
matrix θ, so the estimation parameter be:
. Principal Component Regression analysis is basically
aimed to simplify the variables observed by shrinking (reduced) the dimension. This is
done by removing the correlation between independent variables through the
transformation of the independent variables of origin to a new variable that does not
correlate at all, or so-called principal component (principal component). Testing
coefficients obtained from the two methods would indicate that multicollinearity in a
multiple linear regression was completed. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.title | Perbandingan Penggunaan Metode Analisis Regresi Ridge dan Metode Analisis Regresi Komponen Utama dalam Menyelesaikan Masalah Multikolinieritas (Studi Kasus Data PDRB Propinsi Sumatera Utara) | en_US |
dc.identifier.nim | NIM100823006 | |
dc.identifier.nidn | NIDN0003035305 | |
dc.identifier.nidn | NIDN0002025505 | |
dc.identifier.kodeprodi | KODEPRODI44201#Matematika | |
dc.description.pages | 67 Halaman | en_US |
dc.description.type | Skripsi Sarjana | en_US |