Show simple item record

dc.contributor.advisorMuchtar, Muhammad Anggia
dc.contributor.advisorAndayani, Ulfi
dc.contributor.authorSaragih, Septian Dwicahya
dc.date.accessioned2023-02-06T02:51:58Z
dc.date.available2023-02-06T02:51:58Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/81318
dc.description.abstractIn this study, image lesions were identified as an early prevention of oral cancer (squamous cell carcinoma) using the Convolutional Neural Network algorithm. The initial step that must be done is to analyze the data that will be used for training, then analyze several stages of image processing used, such as image processing, feature extraction with the Gray Level Co-occurance Matrix feature extraction method and the implementation of the algorithm that will be used. The amount of data processed is 425 images of oral lesions which have a size of 250×250 pixels in *.jpg format. After testing the identification of the oral lesions dataset, the lesion image training was carried out to obtain the GLCM feature extraction value. The experimental results show that the application can read the pixel value of the training image with a maximum network parameter of error of 0.01 and a learning rate of 0.05. The application can identify normal lesion images or Squamous Cell Carcinoma lesions with the best results on Model-4 and Model-5 with an accuracy value of 90%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectIdentification of Oral Cancer (Carsinoma Cell Squamosa) Imageen_US
dc.subjectGray Level Co-occurance feature extractionen_US
dc.subjectConvolutional Neural Network methoden_US
dc.titleIdentifikasi Penyakit Kanker Mulut (Carsinoma Cell Squamosa) Berdasarkan Kelainan Sel Jaringan dengan Menggunakan Metode Convolutional Neural Networken_US
dc.typeThesisen_US
dc.identifier.nimNIM151402008
dc.identifier.nidnNIDN0010018006
dc.identifier.nidnNIDN0119048603
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages117 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record