Show simple item record

dc.contributor.advisorHizriadi, Ainul
dc.contributor.advisorSeniman
dc.contributor.authorM, Syarfan Hasriansyah
dc.date.accessioned2023-02-06T08:10:31Z
dc.date.available2023-02-06T08:10:31Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/81345
dc.description.abstractIn this study, Classification of Oral Lesions Image as Early Prevention of Oral Cancer Using the Capsule Neural Network Method was carried out. The initial step that must be done is to analyze the data that will be used for classification, then analyze several stages of image processing used, such as image processing, featured extraction with the gray level co-occurance matrix feature extraction method and the implementation of the method to be used, namely the Capsule Neural Network for classification. The amount of data processed is 1130 images of oral lesions which is obtained from mendeley data. After classifying the oral lesions image dataset, the lesion image training was carried out to obtain feature extraction values. The experimental results obtained the best accuracy value of 85%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectOral Lesions image classificationen_US
dc.subjectGray Level Co-occurance feature extractionen_US
dc.subjectCapsule Neural Network methoden_US
dc.titleKlasifikasi Citra Oral Lesions sebagai Pencegahan Dini Kanker Mulut Menggunakan Metode Capsule Neural Networken_US
dc.typeThesisen_US
dc.identifier.nimNIM171402050
dc.identifier.nidnNIDN0127108502
dc.identifier.nidnNIDN0025058704
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages111 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record