Show simple item record

dc.contributor.advisorSitompul, Opim Salim
dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.authorSharif, Afriandy
dc.date.accessioned2023-02-15T08:08:17Z
dc.date.available2023-02-15T08:08:17Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/81837
dc.description.abstractNumerous research have been performed to classify English accents using both classic and contemporary classification methods. In general, past research on voice classification and voice recognition employs the MFCC approach to extract voice features. However, neither the fluctuation in the number of cepstral coefficients on MFCC features nor the merits and disadvantages of the MFCC approach in sound categorization are discussed. The purpose of this study is to examine the variation in the number of MFCC features used in the classification of English accents using the MFCC and LSTM approaches. In this investigation, the classification accuracy of English accent sounds was determined to be 64.96 percent when the MFCC feature value was set to 17.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAccenten_US
dc.subjectClassificationen_US
dc.subjectMFCCen_US
dc.subjectLSTMen_US
dc.subjectEnglishen_US
dc.titleAnalisis Variasi Jumlah Fitur MFCC pada LSTM dalam Klasifikasi Suara Aksen Berbahasa Inggrisen_US
dc.typeThesisen_US
dc.identifier.nimNIM187038065
dc.identifier.nidnNIDN0017086108
dc.identifier.nidnNIDN0026106209
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages77 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record