Show simple item record

dc.contributor.advisorEfendi, Syahril
dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.authorPrayogi, Andi
dc.date.accessioned2023-02-15T09:04:19Z
dc.date.available2023-02-15T09:04:19Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/81842
dc.description.abstractDevelopment of science and technology modern face detection and recognition applied in more sectors like verification identity by every face move application from various orientation angles. K-Nearest Neighbors algorithm is a classification object method according to data learning that has a near distance from the tested object. Using 50 captured data training every object from the tested object use data images and a real-time webcam. Tested using pictures to get good results accuracy is 0.94. While tested with by real-time webcam gets different results from various tested objects. The first object gets accuracy value is 0.83, second object gest an accuracy value is 0.59. The analysis tested performance algorithm K-Nearest Neighbors results for face identification and recognition are proven to be able to produce good accuracy values for flexible data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectFace Recognitionen_US
dc.subjectK-Nearest Neighborsen_US
dc.subjectFlexible Dataen_US
dc.titleAnalisis Kinerja Algoritma K-Nearest Neighbors untuk Identifikasi dan Pengenalan Wajahen_US
dc.typeThesisen_US
dc.identifier.nimNIM207038001
dc.identifier.nidnNIDN0010116706
dc.identifier.nidnNIDN0026106209
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages95 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record