Show simple item record

dc.contributor.advisorZarlis, Muhammad
dc.contributor.advisorEfendi, Syahril
dc.contributor.authorSiregar, Hotmaida Lestari
dc.date.accessioned2023-02-17T01:56:52Z
dc.date.available2023-02-17T01:56:52Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/81936
dc.description.abstractCluster analysis is a multivariate analysis method whose purpose is to classify an object into a group based on certain characteristics. In cluster analysis, determining the number of initial clusters is very important so that the resulting clusters are also optimal. In this study, an analysis of the most optimal number of clusters for data classification will be carried out using the K-Means and K-Medoids methods. The data were analyzed using the RFM model and a comparative analysis was carried out based on the DBI value and cluster compactness which was assessed from the average silhouette score. The K-Means method produces the smallest DBI value of 0.485 and the highest average silhouette score value of 0.781 at k=6, while the K-Medoids method produces the smallest DBI value of 1.096 and the highest average silhouette score value of 0.517 at k=3. The results show that the best method for clustering donor data is using the K-Means method with an optimal number of clusters of 6 clusters.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectK-Meansen_US
dc.subjectK-Medoidsen_US
dc.subjectRFM Modelen_US
dc.subjectDBIen_US
dc.subjectAverage Silhouette Scoreen_US
dc.titleAnalisis Cluster dengan Menggunakan Metode K-Means dan K-Medoids untuk Clustering Data Donatur Lembaga Amil Zakaten_US
dc.typeThesisen_US
dc.identifier.nimNIM207038046
dc.identifier.nidnNIDN0010116706
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages85 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record