Show simple item record

dc.contributor.advisorMawengkang, Herman
dc.contributor.advisorEfendi, Syahril
dc.contributor.authorAtsauri, Muhammad Riki
dc.date.accessioned2023-02-17T03:57:35Z
dc.date.available2023-02-17T03:57:35Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/81956
dc.description.abstractAs a novel and efficient ensemble learning algorithm, XGBoost has been widely applied due to its multiple advantages, but its classification effect in cases of data imbalance is often not ideal. Because of it, efforts were made to optimize XGBoost and the Cross Validation algorithm. The main idea is to combine cross-validation and XGBoost on unbalanced data for data processing and then get the final model based on XGBoost through training. At the same time, optimal parameters are searched and adjusted automatically through optimization algorithms to realize more accurate classification predictions. In the testing phase, the area under the curve (AUC) is used as an evaluation indicator to compare and analyze the classification performance of various sampling methods and algorithm models. The results of the model analysis using AUC are expected to verify the feasibility and effectiveness of the proposed algorithm.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectXGboosten_US
dc.subjectCross Validationen_US
dc.subjectunbalanced dataen_US
dc.subjectclassificationen_US
dc.titleAnalisis Kombinasi Cross Validation dan Extreme Gradient Boost pada Klasifikasi Data Tidak Seimbangen_US
dc.typeThesisen_US
dc.identifier.nimNIM187038056
dc.identifier.nidnNIDN8859540017
dc.identifier.nidnNIDN0010116706
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages62 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record