Show simple item record

dc.contributor.advisorDarnius, Open
dc.contributor.advisorSutarman
dc.contributor.authorBangun, Monica Natalia Br
dc.date.accessioned2023-02-21T04:26:08Z
dc.date.available2023-02-21T04:26:08Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/82103
dc.description.abstractThere are a large number of approaches to clustering problems, including opti- mization - based methods involving mathematical programming models to develop efficient and meaningful clustering schemes. Grouping is one of the data labeling techniques. K-means clustering is a partition clustering algorithm that starts by selecting k representative points as the initial centroid. Each point is then as- signed to the nearest centroid based on the selected specific proximity measure. This writing is focused on the grouping of hazard zones after optimizing the Sum of Square Error (SSE) using the elbow method. This study consists of five steps, namely (1) data collection, (2) calculating the value of Sum of Square Error (SSE) and (3) optimization using the elbow method (4) Performing a K-mean clustering algorithm on 8 variables, namely magnitude (SR), depth, death toll, non-death victim, heavy damage to public facilities, light damage to public facilities, affected areas and less affected areas.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectClusteringen_US
dc.subjectK-Meansen_US
dc.subjectSum of Square Error (SSE)en_US
dc.subjectElbow methoden_US
dc.subjectEarthquakeen_US
dc.titleOptimisasi dalam Pengelompokan Zona Bahaya setelah Bencana Gempaen_US
dc.typeThesisen_US
dc.identifier.nimNIM207021007
dc.identifier.nidnNIDN0014106403
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44101#Matematika
dc.description.pages74 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record