Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorHarahap, Faisal Hanafi
dc.date.accessioned2023-06-21T05:06:57Z
dc.date.available2023-06-21T05:06:57Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/85574
dc.description.abstractThere are various methods that can be used in data classification. One of the classification methods is classification using multinomial logistic regression. Multinomial logistic regression is a regression model with a categorical dependent variable. In multinomial logistic regression, multicollinearity can occur. Principal component analysis is one method of dealing with multicollinearity. Multinomial logistic regression using principal component analysis is used as a comparison to ordinary multinomial logistic regression. The method used in estimating the parameter of the multinomial logistic regression model and the principal component multinomial logistic regression model is the maximum likelihood method. The significance tests and goodness-of-fit test are carried out on the models obtained. Classification is the final step after good models are obtained. Based on the data set studied, the researcher found that the accuracy of classification using the principal component multinomial logistic regression model is higher than using the ordinary multinomial logistic regression model.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectmaximum likelihooden_US
dc.subjectmultinomial logistic regressionen_US
dc.subjectprincipal componenten_US
dc.subjectprincipal component multinomial logistic regressionen_US
dc.titleKlasifikasi Menggunakan Model Regresi Logistik Multinomial dan Regresi Logistik Multinomial Komponen Utamaen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803047
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages70 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record