Show simple item record

dc.contributor.advisorRahmat, Romi Fadillah
dc.contributor.advisorPurnamawati, Sarah
dc.contributor.authorAulia, Talitha Azura Putri
dc.date.accessioned2023-07-05T04:10:44Z
dc.date.available2023-07-05T04:10:44Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/85629
dc.description.abstractOne of effective way to present a long text in a short form is extraction. Extraction is a process that aims to transform text into a formatted and concise structure but still retains the important points of the text. Long news texts make it difficult for readers to conclude important information from the news text. Therefore, an automatic summary system is needed so that readers can quickly get a summary and gist of the news text. To get this summary, methods such as Maximal Marginal Relevance (MMR) and Named Entity Recognition (NER) are needed. In this study Maximal Marginal Relevance (MMR) is used to remove redundancies from the initial news text whose summary results will be extracted into entities related to person names, times and places using Named Entity Recognition (NER). The data tested was in the form of news text from online news portals of 100 data. The results of this test produce an accuracy of 81% for the who entity, 83% for the where entity, and 93% for the when entity.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAutomatic Text Summarizationen_US
dc.subjectMaximal Marginal Relevance (MMR)en_US
dc.subjectNamed Entity Recognition (NER)en_US
dc.titleAutomatic Text Summarization (Ats) pada Berita Bahasa Indonesia Berdasarkan 5w1h dengan Metode Peringkasan Ekstraktif dan Maximal Marginal Relevance (Mmr)en_US
dc.typeThesisen_US
dc.identifier.nimNIM161402087
dc.identifier.nidnNIDN0003038601
dc.identifier.nidnNIDN0026028304
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages67 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record