Show simple item record

dc.contributor.advisorSawaluddin
dc.contributor.authorMalau, Tohati Lambadya
dc.date.accessioned2023-08-02T12:48:27Z
dc.date.available2023-08-02T12:48:27Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/86253
dc.description.abstractLogistic Regression Ensemble (Lorens) is one of the ensemble concepts of binary logistic regression which is usually used on high dimensional data to develop binary logistic regression in classification analysis. This method is built by dividing the variables into a number of subspaces randomly, each subspace is modeled, predicts a category and combines the prediction results by calculating the average category for each subspace or majority voting. PCA is a statistical analysis that can be used to reduce a number of independent features/variables. PCA is often used for the pre-processing stage. The PCA used to reduce the number of variables in each subspace in this study gave results of increased accuracy for high-dimensional data scenarios of multicollinearity effects generated/simulated as many as 160 continuous variables and 40 discrete variables. The performance results for the total accuracy value for each scenario are: the imbalance ratio and the multicollinearity effect are respectively 94.37% and 71.25% while for real data it is 86.68%en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectHigh dimension dataen_US
dc.subjectLogistic Regression Ensemble (LORENS)en_US
dc.subjectMaximum Likelihooden_US
dc.subjectPCAen_US
dc.subjectBinary logistic regressionen_US
dc.titleAnalisis Metode Logistik Regresi Ensemble untuk Klasifikasi dengan Pra-Pemrosesan Menggunakan Principal Component Analysisen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803114
dc.identifier.nidnNIDN0031125982
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages94 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record