Show simple item record

dc.contributor.advisorCandra, Ade
dc.contributor.advisorEfendi, Syahril
dc.contributor.authorErnawati, Ernawati
dc.date.accessioned2023-08-08T04:10:21Z
dc.date.available2023-08-08T04:10:21Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/86398
dc.description.abstractClass imbalance is meant as one of the majority classes which is much more than the minority class. Consequently, this condition can cause the algorithm performance to decrease. This class imbalance can also affect the bad performance of C4.5 algorithm in classifying. Combination of feature selection method by using information gain and bagging can decrease class imbalance in the bad performance of C4.5 algorithm. The process of feature selection, using information gain is done to select attributes, using the threshold 0.02. The result of the accuracy of feature IG selection combination with bagging at the validation of 10 fold cross-validation can increase properly in classifying imbalanced data in diabetes data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAlgorithm C4.5en_US
dc.subjectClass Imbalanceen_US
dc.subjectBaggingen_US
dc.subjectInformation Gainen_US
dc.subjectSDGsen_US
dc.titleKombinasi Bootstrap Aggregation (Bagging) dan Information Gain untuk Mengatasi Ketidakseimbangan Kelas (Class Imbalance) pada Algoritma C4.5.en_US
dc.typeThesisen_US
dc.identifier.nimNIM187038024
dc.identifier.nidnNIDN0004097901
dc.identifier.nidnNIDN0010116706
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages96 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record