Show simple item record

dc.contributor.advisorHerriyance
dc.contributor.advisorGinting, Dewi Sartika Br
dc.contributor.authorSyarif, T. M. Fadzri
dc.date.accessioned2024-01-12T09:05:51Z
dc.date.available2024-01-12T09:05:51Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/90138
dc.description.abstractThis study aims to compare the effectiveness of three reinforcement learning algorithms, namely DQN, A2C, and PPO, in optimizing the performance of an agent in the 2D Box Endless Runner game. The study evaluates the performance of each algorithm by examining the rewards generated during testing episodes, as well as the generalization of the trained models to different game environments. The experimental results show that DQN, A2C and PPO produce effective models for the Endless Box Runner 2D game problem. However, this result should be considered as a general indication and cannot be directly generalized to other problems. Furthermore, the trained models in the same initial environment but different algorithms show good learning abilities in the generalization test.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectReinforcement learningen_US
dc.subjectagenten_US
dc.subjectgameen_US
dc.subjectperformanceen_US
dc.subjecteffectivenessen_US
dc.subjectBox Endless Runner 2D.en_US
dc.subjectSDGsen_US
dc.titleAnalisis Reinforcement Learning pada Game Box Endless Runner 2Den_US
dc.typeThesisen_US
dc.identifier.nimNIM191401071
dc.identifier.nidnNIDN0024108007
dc.identifier.nidnNIDN0104059001
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages66 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record