Show simple item record

dc.contributor.advisorSutarman
dc.contributor.advisorSihombing, Poltak
dc.contributor.authorPurba, Roi
dc.date.accessioned2024-02-16T03:35:04Z
dc.date.available2024-02-16T03:35:04Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91320
dc.description.abstractThe performance of K-Nearest Neighbor (KNN) classification cannot be separated from determining the distance. Classification distance calculations are usually carried out on numeric data types. However, when faced with a heterogeneous dataset, Euclidean Distance experiences problems. To overcome this problem, this research contributes to calculating classification distances, especially nominal, ordinal, binary and numerical types. Distance calculations are carried out using the Gower Dissimilarity Distance technique. Experimental results on three datasets that have two data classes show that this method can produce 71% accuracy when tested on the Bank dataset, 81% on the Churn Modeling dataset and 84% on the House Prices dataset. The results of this experiment show that Gower Dissimilarity is able to solve the problem of calculating classification distances, but is not as stable as Logistic Regression which has been tested in classifying heterogeneous datasets.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectHeterogeneous Dataseten_US
dc.subjectK-Nearest Neighborsen_US
dc.subjectRegression Logisticsen_US
dc.subjectGower Dissimilarity Distanceen_US
dc.subjectClassificationen_US
dc.subjectSDGsen_US
dc.titleKinerja Klasifikasi KNN – Gower Dissimilarity dan Regresi Logistik pada Dataset Heterogenen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038033
dc.identifier.nidnNIDN0026106305
dc.identifier.nidnNIDN0017036205
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages103 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record