Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorHarahap, Nurhasana
dc.date.accessioned2024-02-19T07:22:11Z
dc.date.available2024-02-19T07:22:11Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91485
dc.description.abstractThe Generalized Linear Mixed Model (GLMM) is a model that combines characteristics from the General Linear Model (GLM) and the Linear Mixed Model (LMM). In this model, the response variable can be derived from an exponential distribution, and it incorporates both fixed and random effects. This study aims to explore parameter estimation methods in GLMM using maximum likelihood. This method is employed to estimate parameters in GLMM and comprehend its application in the analysis of complex data. Adult mortality data in Asia is utilized to test the effectiveness of this method in evaluating the GLMM model. Four predictor variables are investigated: alcohol consumption, measles cases, polio cases, and educational duration. From the research results, the obtained model is lnMit = 6.362151 + 0.059990X1 + 0.000003X2 + 0.001484X3+ … + B44D44 + 0.05980Z. The estimation results indicate that maximum likelihood can provide parameter estimates for GLMM. This method also has advantages in handling data with mixed structures, such as repeated and hierarchical data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectParameter estimationen_US
dc.subjectGLMMen_US
dc.subjectMaximum likelihooden_US
dc.subjectSDGsen_US
dc.titlePenaksiran Parameter Generalized Linear Mixed Model Menggunakan Maximum Likelihooden_US
dc.typeThesisen_US
dc.identifier.nimNIM190803083
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages82 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record