Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorGinting, Eivi Damayanti
dc.date.accessioned2024-02-20T04:45:23Z
dc.date.available2024-02-20T04:45:23Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91549
dc.description.abstractPoisson regression is a regression analysis employed to model a response variable (Y) with a predictor variable (X). This research aims to estimate the parameters in the poisson regression model using the Maximum Likelihood Estimation (MLE) method. The selection of the Maximum Likelihood Estimation (MLE) method is motivated by its capability to provide consistent and efficient estimates in modeling the relationship between predictor variables and response variables in poisson regression. The Maximum Likelihood Estimation (MLE) equation is completed using the Fisher Scoring algorithm, an iterative approach that is utilized to update parameters repeatedly to approach the maximum likelihood value. This research was applied to the number of accident data on Minnesota state highways, and the obtained poisson regression model is represented by Y1 = exp(5,7223 – 0,0217xi1 – 0,4294xi2 – 0,0428xi3 – 0,1112xi ̂ .en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMaximum likelihooden_US
dc.subjectParameter estimationen_US
dc.subjectPoisson regressionen_US
dc.subjectSDGsen_US
dc.titlePenaksiran Parameter Regresi Poisson dengan Maximum Likelihooden_US
dc.typeThesisen_US
dc.identifier.nimNIM190803055
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages40 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record