dc.contributor.advisor | Ginting, Armansyah | |
dc.contributor.author | Syam, Kemal Abdullah | |
dc.date.accessioned | 2024-02-21T03:17:30Z | |
dc.date.available | 2024-02-21T03:17:30Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/91641 | |
dc.description.abstract | This research aims to apply the K-Nearest Neighbors (K-NN) algorithm to predict surface roughness in the machining operation of AISI 304 steel with the Minimal Quantity Lubrication (MQL) technique. Surface roughness is a critical parameter in the machining industry that affects product quality. In the experiment, surface roughness data were obtained from a research paper conducted by Dubey et al. (2022), considering operational parameters such as cutting speed, depth of cut, feed rate, and nanoparticle concentration. The K-NN model is used to predict surface roughness based on specific configurations of operational parameters. The research results indicate that the K-NN model can provide accurate predictions with a significant coefficient of determination (R2) and low error rates (MSE and MAPE). This study provides a foundation for improving efficiency and product quality in the machining industry with the assistance of machine learning technology, especially the K-NN algorithm. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Surface roughness | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | K-Nearest Neighbors | en_US |
dc.subject | Minimum Lubrication Quantity | en_US |
dc.subject | AISI 304 Steel | en_US |
dc.subject | Lubrication Quantity | en_US |
dc.subject | SDGs | en_US |
dc.title | Algoritma K-Nearest Neighbor untuk Memperoleh Nilai Prediksi dari Kekasaran Permukaan pada Operasi Pembubutan Baja Aisi 304 Berbantuan Teknik Mql | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM180401179 | |
dc.identifier.nidn | NIDN0007086804 | |
dc.identifier.kodeprodi | KODEPRODI21101#Teknik Mesin | |
dc.description.pages | 75 Halaman | en_US |
dc.description.type | Skripsi Sarjana | en_US |