Show simple item record

dc.contributor.advisorGinting, Armansyah
dc.contributor.authorSyam, Kemal Abdullah
dc.date.accessioned2024-02-21T03:17:30Z
dc.date.available2024-02-21T03:17:30Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91641
dc.description.abstractThis research aims to apply the K-Nearest Neighbors (K-NN) algorithm to predict surface roughness in the machining operation of AISI 304 steel with the Minimal Quantity Lubrication (MQL) technique. Surface roughness is a critical parameter in the machining industry that affects product quality. In the experiment, surface roughness data were obtained from a research paper conducted by Dubey et al. (2022), considering operational parameters such as cutting speed, depth of cut, feed rate, and nanoparticle concentration. The K-NN model is used to predict surface roughness based on specific configurations of operational parameters. The research results indicate that the K-NN model can provide accurate predictions with a significant coefficient of determination (R2) and low error rates (MSE and MAPE). This study provides a foundation for improving efficiency and product quality in the machining industry with the assistance of machine learning technology, especially the K-NN algorithm.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSurface roughnessen_US
dc.subjectMachine Learningen_US
dc.subjectK-Nearest Neighborsen_US
dc.subjectMinimum Lubrication Quantityen_US
dc.subjectAISI 304 Steelen_US
dc.subjectLubrication Quantityen_US
dc.subjectSDGsen_US
dc.titleAlgoritma K-Nearest Neighbor untuk Memperoleh Nilai Prediksi dari Kekasaran Permukaan pada Operasi Pembubutan Baja Aisi 304 Berbantuan Teknik Mqlen_US
dc.typeThesisen_US
dc.identifier.nimNIM180401179
dc.identifier.nidnNIDN0007086804
dc.identifier.kodeprodiKODEPRODI21101#Teknik Mesin
dc.description.pages75 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record