Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorSimamora, Rahel Fransiska S A
dc.date.accessioned2024-03-07T03:11:15Z
dc.date.available2024-03-07T03:11:15Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/92220
dc.description.abstractThis research aims to estimate and compare the results of parameter estimation for nonlinear regression using the Particle Swarm Optimization and Genetic Algorithm algorithms. In Nonlinear Regression Models, parameter estimation is carried out using the conventional nonlinear strategy referred to as "Nonlinear Least Squares Regression." When estimating nonlinear regression model parameters, the Gauss-Newton Method and the Levenberg-Marquadrt Method still do not guarantee convergence and a global optimum, despite the fact that PSO and GA have provided guarantees for one. The distinction in the wellness esteem coming about because of these two methodologies is utilized to evaluate it. After simulating the estimator's data with the Matlab program, it was discovered that the genetic algorithm was more effective for parameter estimation in nonlinear regression models. The results show that the standard nonlinear least squares regression fits GA and PSO well. GA parameter estimation, on the other hand, shows greater successen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectParameter Estimationen_US
dc.subjectNonlinear Regressionen_US
dc.subjectGenetic Algorithmen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectSDGsen_US
dc.titlePenaksiran Parameter Regresi Nonlinear Menggunakan Particle Swarm Optimization dan Genetic Algorithmen_US
dc.typeThesisen_US
dc.identifier.nimNIM180803079
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages124 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record