Show simple item record

dc.contributor.advisorSutarman
dc.contributor.advisorDarnius, Open
dc.contributor.authorSimanullang, Herlin
dc.date.accessioned2024-04-19T04:39:27Z
dc.date.available2024-04-19T04:39:27Z
dc.date.issued2016
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/93030
dc.description.abstractThis research investigates Romeras local linearization approach as a variance pre- diction method in partial least squares (PLS) regression. By addressing limita- tions in the original PLS regression formula, the local linearization approach aims to improve accuracy and stability in variance predictions. Extensive simulations are conducted to assess the method’s performance, demonstrating its superiority over traditional algebraic methods and showcasing its computational advantages, particularly with a large number of predictors. Additionally, the study introduces a novel computational technique utilizing bootstrap parameters, enhancing compu- tational stability and robustness. Overall, the research provides valuable insights into the local linearization approach’s effectiveness, guiding researchers and prac- titioners in selecting more reliable and efficient regression modeling techniques.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPartial least squares regressionen_US
dc.subjectLinearization methoden_US
dc.subjectOrthogonal score algorithmen_US
dc.subjectSDGsen_US
dc.titleMetode Linierisasi untuk Regresi Kuadrat Terkecil Parsialen_US
dc.typeThesisen_US
dc.identifier.nimNIM147021022
dc.identifier.nidnNIDN0026106305
dc.identifier.nidnNIDN0014106403
dc.identifier.kodeprodiKODEPRODI44101#Matematika
dc.description.pages39 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record