Show simple item record

dc.contributor.advisorSuwilo, Saib
dc.contributor.authorSembiring, Diana Ayu Virna Br
dc.date.accessioned2024-04-24T02:39:28Z
dc.date.available2024-04-24T02:39:28Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/93138
dc.description.abstractThe concept of traveling salesman problem is to find a Hamiltonian cycle that has minimum weight. This research modifies the Kruskal and Prim algorithms that are effective for determining the minimum spanning tree so as to solve the traveling salesman problem. In Kruskal's algorithm, an additional condition is made where the degree of each vertex must be exactly two so as to produce a Hamiltonian cycle along N. While in Prim's algorithm, the addition of edges can only be done at the two end vertices to produce a Hamiltonian cycle along N. The results of the modification of these two algorithms are simulated for N≤100 and produce an average error value of 17.44% for the Krutsp algorithm and 15.73% for the Primtsp algorithm.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectHamiltonian Cycleen_US
dc.subjectKruskalen_US
dc.subjectPrimen_US
dc.subjectTravelling Salesman Problemen_US
dc.subjectSDGsen_US
dc.titleMetode Heuristik Berbasis Minimum Spanning Tree untuk Travelling Salesman Problemen_US
dc.title.alternativeHeuristic Method Based on Minimum Spanning Tree for Travelling Salesman Problemen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803086
dc.identifier.nidnNIDN0009016402
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages38 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record