Show simple item record

dc.contributor.advisorArisandi, Dedy
dc.contributor.advisorNurhasanah, Rossy
dc.contributor.authorSimbolon, Eric Samuel
dc.date.accessioned2024-05-22T06:46:53Z
dc.date.available2024-05-22T06:46:53Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/93415
dc.description.abstractStock market serves as a highly popular investment instrument in Indonesia, influenced by various factors, including public sentiment towards telecommunication services. This research aims to analyze and predict the movement of Telkom's stock prices based on public sentiment on the Twitter platform, employing a deep learning approach utilizing the Gated Recurrent Unit (GRU). The Twitter data used specifically includes tweets referring to Telkom's services ($TLKM.JK), while historical stock data from Yahoo Finance is utilized as a supporting dataset. Sentiment Analysis is conducted using VADER to classify sentiments into positive, negative, or neutral categories. The sentiment data is split with 80% for the Training process and 20% for model testing. In contrast to previous studies using LSTM models and Reporting an RMSE of 1120.6517, the findings of this research indicate that the GRU model can predict Telkom's stock prices with an accuracy level reaching 90%. The evaluation results of this model show an MSE of 102.43 and an RMSE of 10.120770.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectStock marketen_US
dc.subjectstock priceen_US
dc.subjectpublic sentimenten_US
dc.subjectTwitteren_US
dc.subjectdeep learningen_US
dc.subjectGated recurrent uniten_US
dc.subjectVaderen_US
dc.subjectSDGsen_US
dc.titlePrediksi Harga Saham Berdasarkan Sentimen Publik Atas Layanan Telekomunikasi Menggunakan Pendekatan Gated Recurrent Uniten_US
dc.title.alternativePrediction of Stock Prices Based on Public Sentiment on Telecommunications Services Using Gated Recurrent Uniten_US
dc.typeThesisen_US
dc.identifier.nimNIM181402083
dc.identifier.nidnNIDN0031087905
dc.identifier.nidnNIDN0001078708
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages89 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record