Show simple item record

dc.contributor.advisorZulkarnain, Hendra
dc.contributor.authorImansyah, Muhammad Aji
dc.date.accessioned2024-08-23T09:02:05Z
dc.date.available2024-08-23T09:02:05Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96052
dc.description.abstractThe insulation oil within transformers can undergo chemical and physical changes, which can be indicated by dissolved gas analysis (DGA) and dielectric strength. This research aims to develop prediction models for transformer insulation oil purification using Recurrent Neural Network (RNN) and linear regression methods. DGA and dielectric strength data from PT. Solusi Bangun Andalas are utilized to train the models. The study obtained purification time predictions for insulation oil based on linear regression methods, with a dielectric strength value of 354 days having MAE 85.724693 and MSE 9436.918999, and based on Total Dissolved Combustible Gas (TDCG) value of 343 days having MAE 87.180572 and MSE 9498.780093. Using the RNN method, based on dielectric strength data, the prediction was 351 days with MAE 0.021903 and MSE 0.23994555, while based on TDCG value it was 321 days with MAE 0.62679523 and MSE 0.48404762. The research results indicate that RNN provides more accurate predictions of purification time compared to linear regression, with lower MAE and MSE. The predictions suggest that the results of dissolved gas analysis can be used as a reference for performing transformer insulation oil purification before dielectric strength valuesen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectTransformeren_US
dc.subjectInsulation Oilen_US
dc.subjectDGAen_US
dc.subjectKDen_US
dc.subjectRNNen_US
dc.subjectRlen_US
dc.subjectPurification predictionen_US
dc.subjectMAEen_US
dc.subjectMSEen_US
dc.subjectSDGsen_US
dc.titlePrediksi Purifikasi Minyak Isolasi Transformator Berdasarkan Hasil Uji Analisis Gas Terlarut dan Kekuatan Dielektrik Menggunakan Metode Recurrent Neural Network (RNN)en_US
dc.title.alternativePrediction of Transformer Insulation Oil Purification Based on Test Results of Dissolved Gas and Dielectric Strength Analysis Using the Recurrent Neural Network (RNN) Methoden_US
dc.typeThesisen_US
dc.identifier.nimNIM200402020
dc.identifier.nidnNIDN0014056104
dc.identifier.kodeprodiKODEPRODI20201#Teknik Elektro
dc.description.pages75 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record