Show simple item record

dc.contributor.advisorZamzami, Elviawaty Muisa
dc.contributor.advisorSuyanto
dc.contributor.authorNapitupulu, Fajrul Malik Aminullah
dc.date.accessioned2024-08-27T07:08:36Z
dc.date.available2024-08-27T07:08:36Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96161
dc.description.abstractSteganalysis is a technique used to detect hidden messages in steganographic images. It involves detecting the existence of hidden messages in digital media. Recent steganography techniques have gained attention due to their security. This research presents a universal steganalysis method for blocking recent techniques in the spatial domain. The method analyzes using CC-PEV and SPAM feature extractor for classifying whether the suspicious image is stego or normal. SPAM feature extractor successfully detects all stego images with an accuracy of 75,28% while the CC-PEV feature is slightly left behind with an accuracy of 66,95% both using a linear kernelen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSteganographyen_US
dc.subjectSteganalysisen_US
dc.subjectCC-PEVen_US
dc.subjectSPAMen_US
dc.subjectSDGsen_US
dc.titleAnalisis Perbandingan Ekstraksi Fitur CC-PEV dan Subtractive Pixel Adjacency Matrix dalam Steganalisis Berbasis Machine Learningen_US
dc.title.alternativeComparative Analysis of CC-PEV and Subtractive Pixel Adjacency Matrix Feature Extraction in Machine Learning Based Steganalysisen_US
dc.typeThesisen_US
dc.identifier.nimNIM207038010
dc.identifier.nidnNIDN0016077001
dc.identifier.nidnNIDN0013085903
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages67 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record