Show simple item record

dc.contributor.advisorLydia, Maya Silvi
dc.contributor.advisorNasution, Benny Benyamin
dc.contributor.authorSafrina, Nanda
dc.date.accessioned2024-08-27T08:49:50Z
dc.date.available2024-08-27T08:49:50Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96199
dc.description.abstractThis research aims to develop an expert system for initial diagnoses of skin diseases in cats using the Decision Tree method. It assists cat owners in identifying skin diseases based on observed symptoms. Data from expert veterinarian drh. Ismi Azima, including various types of cat skin diseases and their symptoms, were used. The research employs 80% training data and 20% testing data to develop the classification model. Testing results indicate the Decision Tree model achieves up to 90% average accuracy in diagnosing cat skin diseases based on 50 datasets. This expert system aids in diagnosis and provides treatment and prevention solutions, beneficial for cat owners, especially in areas with limited veterinary access. In conclusion, this Decision Tree-based expert system effectively provides initial diagnoses of skin diseases in cats with high accuracy.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectExpert Systemen_US
dc.subjectDecision Treeen_US
dc.subjectXGBoosten_US
dc.subjectCat Skin Diseasesen_US
dc.subjectSDGsen_US
dc.titlePeningkatan Akurasi Algoritma Decision Tree dengan Teknik XGboost pada Diagnosis Penyakit Hewanen_US
dc.title.alternativeImproved Accuracy of Decision Tree with XGboost Technique in Cat Skin Disease Diagnosisen_US
dc.typeThesisen_US
dc.identifier.nimNIM207038051
dc.identifier.nidnNIDN0027017403
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages77 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record