Show simple item record

dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.advisorEfendi, Syahril
dc.contributor.authorRamadhani, Putri Tsatsabila
dc.date.accessioned2024-08-27T08:50:15Z
dc.date.available2024-08-27T08:50:15Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96204
dc.description.abstractAccording to Global Burden of Cancer study released by the World Health Organization (WHO) in 2020, there were 396,914 cancer cases in Indonesia with total deaths reaching 234,511 cases. To reduce these cases, early detection is still the main key. Utilizing microarray technology that can capture gene expression can be used to detect cancer. However, high dimensionality, small sample size, and noise in gene expression data are serious challenges in microarray data analysis, which can cause the curse of dimensionality problem. Therefore, dimensionality reduction is essential and sensitive to achieve satisfactory classification performance. Therefore, the authors proposed PCA method for dimensionality reduction of microarray data and Naïve Bayes was used for data classification. The proposed method shows the improved performance of Naïve Bayes in microarray data classification where the achieved accuracy value is 92.11% and f1-score is 93.88% for ovarian cancer and for prostate cancer, the accuracy is 93.55%, and f1-score reaches 92.86%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectmicroarray dataen_US
dc.subjectdimension reductionen_US
dc.subjectcancer detectionen_US
dc.subjectSDGsen_US
dc.titleReduksi Dimensi Data Microarray untuk Peningkatan Kinerja Algoritma Naïve Bayes dalam Pengklasifikasianen_US
dc.title.alternativeDimensionality Reduction of Microarray Data for Performance Improvement of Naïve Bayes Algorithm in Classificationen_US
dc.typeThesisen_US
dc.identifier.nimNIM207038030
dc.identifier.nidnNIDN0026106209
dc.identifier.nidnNIDN0010116706
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages94 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record