Show simple item record

dc.contributor.advisorBudiman, Mohammad Andri
dc.contributor.advisorAmalia
dc.contributor.authorW, Joceline Schellenberg
dc.date.accessioned2024-08-28T04:17:31Z
dc.date.available2024-08-28T04:17:31Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96262
dc.description.abstractCustomer segmentation is crucial for banks to develop marketing strategies tailored to specific customer groups. While the RFM model is commonly used, enhancing service usage expansion requires data on customer transaction preferences, which are typically categorical in nature. Therefore, this study segments bank customers based on their transaction history, utilizing not only numerical data but also categorical data representing transaction preferences using K-Means Clustering. The clustering model effectively groups customers into four clusters with distinct characteristics.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCustomer Segmentationen_US
dc.subjectMixed Dataen_US
dc.subjectK-Means Clusteringen_US
dc.subjectSDGsen_US
dc.titleSegmentasi Nasabah pada Data Campuran dengan K-Means Clusteringen_US
dc.title.alternativeCustomer Segmentation on Mixed Data Using K-Means Clusteringen_US
dc.typeThesisen_US
dc.identifier.nimNIM217056009
dc.identifier.nidnNIDN0008107507
dc.identifier.nidnNIDN0121127801
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages73 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record