Show simple item record

dc.contributor.advisorLubis, Fahrurrozi
dc.contributor.advisorHizriadi, Ainul
dc.contributor.authorSimanjuntak, Jonathan
dc.date.accessioned2024-08-30T08:49:36Z
dc.date.available2024-08-30T08:49:36Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96462
dc.description.abstractIn an effort to improve driving safety, the development of a detection system for helmeted and unhelmeted motorcyclists is important. This study aims to implement the ZFNet and MobileNet SSD algorithms to distinguish helmeted and unhelmeted motorcyclists based on image analysis. The method relies on a deep learning approach to extract features from motorcyclist images and perform classification based on the presence of helmets. Performance evaluation is performed using a variety of image datasets. Experimental results show satisfactory accuracy, with ZFNet and MobileNet SSD achieving 86% accuracy. This system has the potential to be implemented in traffic safety systems to support efforts to prevent riding accidents caused by improper helmet use.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectZFNeten_US
dc.subjectMobileNet SSDen_US
dc.subjectRideren_US
dc.subjectHelmeten_US
dc.subjectDetecionen_US
dc.subjectSDGsen_US
dc.titleDeteksi Pengendara Motor Berhelm dan Tidak Berhelm Berbasis Algoritma ZFNet dan MobileNet Single Shot Detectoren_US
dc.title.alternativeDetection of Motorcyclists with Helmets and No Helmet Based Algorithm ZFNet and MobileNet SSDen_US
dc.typeThesisen_US
dc.identifier.nimNIM171402106
dc.identifier.nidnNIDN0012108604
dc.identifier.nidnNIDN0127108502
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages85 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record