Show simple item record

dc.contributor.advisorSyahputra, Muhammad Romi
dc.contributor.authorTambunan, Saputri Melisa
dc.date.accessioned2024-08-30T08:54:23Z
dc.date.available2024-08-30T08:54:23Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96474
dc.description.abstractThe study aims to compare Generalized Poisson Regression (GPR) and Negative Binomial Regression (NBR) in modeling rainfall amounts based on meteorological factors in South Sumatra from 2021 to 2023, calculated from January to December. Meteorological data such as air temperature, humidity, wind speed, and air pressure were collected for analysis. The analysis was conducted using R Studio. The results indicate that GPR was used to address overdispersion, with significant variables being X1 and X1 , while NBR showed significant influence from variables X1, X1, and X1 on rainfall amounts. The NBR model provided the best fit with the lowest AIC value (427.97).en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectGeneralized Poisson Regressionen_US
dc.subjectNegative Binomial Regressionen_US
dc.subjectrainfallen_US
dc.subjectmeteorological factorsen_US
dc.subjectSouth Sumatraen_US
dc.subjectSDGsen_US
dc.titleKomparasi Generalized Poisson Regression dan Negative Binomial Regression pada Pemodelan Jumlah Curah Hujanen_US
dc.title.alternativeComparison of Generalized Poisson Regression and Negative Binomial Regression in Modeling Rainfallen_US
dc.typeThesisen_US
dc.identifier.nimNIM212407011
dc.identifier.nidnNIDN0115118903
dc.identifier.kodeprodiKODEPRODI49401#Statistika
dc.description.pages64 Pagesen_US
dc.description.typeKertas Karya Diplomaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record