Show simple item record

dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.advisorJaya, Ivan
dc.contributor.authorRania, Allia
dc.date.accessioned2024-09-02T06:19:32Z
dc.date.available2024-09-02T06:19:32Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96519
dc.description.abstractThis application presents the process of recognizing words that can be done by automatically recognizing and converting words in the form of answer sheets from text documents (hardcopy) into document files (softcopy). Furthermore, preprocessing is done to simplify the segmentation stage. Image segmentation is one of the stages of image processing to divide several objects according to predetermined criteria. With the Optical Character Recognition method, image segmentation can be performed. Optical Character Recognition (OCR) aims to identify a point in the image based on the brightness level. The application of Convolutional Neural Network and Long Short-Term Memory (LSTM) method is applied to process small information from images that match the image templates. The application will detect whether the entered image can be tested clearly or not. The results of the training will be carried out by validating each answer sheet input. Based on the tests that have been carried out, the results obtained from this application are an average of 80% of 90 data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectHardcopyen_US
dc.subjectSoftcopyen_US
dc.subjectOptical Character Recognition (OCR)en_US
dc.subjectLong Short-Term Memory (LSTM)en_US
dc.subjectTesseract Engineen_US
dc.subjectSDGsen_US
dc.titleKonversi Lembar Jawaban Ujian Mahasiswa Menjadi Dokumen Digital Menggunakan Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM)en_US
dc.title.alternativeConvert Student Exam Answer Sheets Into Digital Documents Using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)en_US
dc.typeThesisen_US
dc.identifier.nimNIM171402151
dc.identifier.nidnNIDN0026106209
dc.identifier.nidnNIDN0107078404
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages75 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record