Show simple item record

dc.contributor.advisorZamzami, Elviawaty Muisa
dc.contributor.advisorSawaluddin
dc.contributor.authorRahman, Alfi
dc.date.accessioned2024-09-09T08:26:43Z
dc.date.available2024-09-09T08:26:43Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96978
dc.description.abstractPublic complaint services need to receive responses promptly from the relevant department. Therefore, a text classification system with best accuracy is needed. One of the methods used is the Support Vector Machine (SVM). SVM is a method that has better performance than other machine learning methods but is influenced by parameter selection and the division of training data and testing data. The Hyperparameter C functions to control the optimization between margin and classification errors. The larger the value of the C parameter, the greater the penalty for classification errors. One approach to optimizing parameter selection is using the Firefly Algorithm (FFA). The number of data samples taken from the service was 1,209 samples with 4 category classes, and the dataset was split into 70% training data and 30% testing data. Testing was conducted by applying the optimized parameters and measuring the accuracy level. The C-best = 0.143 with an accuracy rate of 97.52%, up from 94.21%. This proves that selecting the C parameter using FFA can improve the accuracy of SVM.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSupport Vector Machineen_US
dc.subjectFireFly Algorithmen_US
dc.subjectClassificationen_US
dc.subjectparameter Cen_US
dc.subjectSDGsen_US
dc.titlePeningkatan Akurasi Support Vector Machine pada Klasifikasi Pengaduan Masyarakat Menggunakan Algoritma Fireflyen_US
dc.title.alternativePerformance Improvement of Support Vector Machine with FireFly Algorithm for Public Complaints Classificationen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038031
dc.identifier.nidnNIDN0016077001
dc.identifier.nidnNIDN0031125982
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages95 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record