Show simple item record

dc.contributor.advisorLydia, Maya Silvi
dc.contributor.advisorNasution, Benny Benyamin
dc.contributor.authorSylvia, Visca
dc.date.accessioned2024-09-09T08:26:54Z
dc.date.available2024-09-09T08:26:54Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96980
dc.description.abstractThe aim of this research is to improve the performance of the Support Vector Machine (SVM) algorithm in determining the values of Cost and Kernel parameters using the GridSearch technique. This study focuses on sentiment analysis of trainee reviews at the Balai Besar Pelatihan Vokasi dan Produktivitas (BBPVP) Medan. Reviews were collected and analyzed to assess the effectiveness of the training programs. The methodology includes data preprocessing, text transformation using TF-IDF, and the application of SVM optimized with GridSearch. The results show that using GridSearch for SVM parameter optimization significantly enhances performance compared to the non-optimized SVM model. Overall accuracy, precision, recall, and F1-Score improved, indicating that the optimized model is more effective in classifying the sentiments of trainee reviews. This research makes a significant contribution to the application of machine learning methods for sentiment analysis, particularly in the context of evaluating job training programs.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSupport Vector Machineen_US
dc.subjectGridSearchen_US
dc.subjectSentiment Analysisen_US
dc.subjectTraining Reviewsen_US
dc.subjectParameter Optimizationen_US
dc.subjectBBPVP Medanen_US
dc.subjectSDGsen_US
dc.titleOptimasi Kombinasi Parameter Cost dan Kernel SVM melalui Gridsearchen_US
dc.title.alternativeSVM Cost and Kernel Parameter Combination Optimization by GridSearchen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038040
dc.identifier.nidnNIDN0027017403
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages80 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record