Show simple item record

dc.contributor.advisorCandra, Ade
dc.contributor.advisorSutarman
dc.contributor.authorSiregar, Fachri Auliansyah
dc.date.accessioned2024-09-09T08:26:59Z
dc.date.available2024-09-09T08:26:59Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96981
dc.description.abstractThis research aims to optimise the classification of trainee acceptance using the K-Nearest Neighbors (KNN) algorithm by finding the optimal value for the K parameter through a combination of Random Search and Grid Search methods. This approach is expected to overcome the problem of humanity in the trainee selection process which is subject to human error. The grid search method is used to find the parameter value sequentially, while the random search method is used for the efficiency of finding the optimal value randomly. The results show that random grid search obtained 91% accuracy with K = 7, using Manhattan metric, search time 0.015 seconds and MAE 0.085. These findings contribute to improving the time efficiency and process of classification by automatically accepting trainees using a machine learning approach, with results relevant to future system development.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectKNNen_US
dc.subjectParameter Ken_US
dc.subjectRandom Searchen_US
dc.subjectGrid Searchen_US
dc.subjectSDGsen_US
dc.titleMenentukan Parameter K pada K-Nearest Neighbors (KNN) Menggunakan Random Grid Searchen_US
dc.title.alternativeDetermining The Parameter K of K-Nearest Neighbors (KNN) Using Random Grid Searchen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038046
dc.identifier.nidnNIDN0004097901
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages105 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record