Show simple item record

dc.contributor.advisorCandra, Ade
dc.contributor.advisorSuyanto
dc.contributor.authorRahayu, Rusnai
dc.date.accessioned2024-09-09T08:27:12Z
dc.date.available2024-09-09T08:27:12Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96983
dc.description.abstractThe 2DPCA (Two-Dimensional Principal Component Analysis) method, an extension of the PCA (Principal Component Analysis) method, is commonly used in pattern recognition to represent complex data in lower dimensions. One of its applications is in face recognition, where it encounters the challenge of ensuring good performance in different shooting conditions while avoiding overfitting to allow for good generalizations. However, it still faces the issue of overfitting. To overcome this problem, the authors researched by combining the 2DPCA method with the sPCA (sparse Principal Component Analysis) and the Ridge Regression Model. In this research, the 2DPCA method performs feature extraction, sPCA selects the most informative features or feature selection, and the Ridge Regression Model performs regularization. The results demonstrate that combining these three methods in face recognition can overcome overfitting and provide better accuracy than using the 2DPCA conventional, with an accuracy rate of 99.38%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subject2DPCAen_US
dc.subjectsPCAen_US
dc.subjectRidge Regression Modelen_US
dc.subjectface recognitionen_US
dc.subjectoverfittingen_US
dc.subjectregularizationen_US
dc.subjectSDGsen_US
dc.titleKombinasi Metode 2DPCA (Two-Dimensional Principal Component Analysis), sPCA (sparse Principal Component Analysis), dan Ridge Regression Model dalam Pengenalan Wajahen_US
dc.title.alternativeCombination of 2DPCA (Two-Dimensional Principal Component Analysis), sPCA (sparse Principal Component Analysis), and Ridge Regression Model for Face Recognitionen_US
dc.typeThesisen_US
dc.identifier.nimNIM227038024
dc.identifier.nidnNIDN0004097901
dc.identifier.nidnNIDN0013085903
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages79 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record