Show simple item record

dc.contributor.advisorPane, Rahmawati
dc.contributor.authorNasution, Elsa Fadillah
dc.date.accessioned2024-09-13T07:46:35Z
dc.date.available2024-09-13T07:46:35Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/97279
dc.description.abstractMulticollinearity is a problem that often arises in regression analysis. This condition occurs when the independent variables have a high correlation between each other. If the assumption of the absence of multicollinearity is not met, researchers will have difficulty in identifying independent variables that have a significant effect in the regression model. The presence of multicollinearity can cause the estimation of regression parameters in the Ordinary Least Square (OLS) method to be inefficient. To overcome this, the LASSO Regression method and the Principal Component Regression (PCR) method are used. The data used in this study are generation data derived from low (0,1-0,3), medium (0,4-0,6), and high (0,7-0,9) correlation levels with different sample sizes (n=20,40,120,200) from normal distribution with 30 and 60 independent variables. The performance of LASSO Regression method and Principal Component Regression (PCR) method is evaluated using Mean Square Error (MSE) value and coefficient of determination (R2)) value. Based on this research, the LASSO Regression method has better efficiency than the Principal Component Regression (PCR) method because the LASSO Regression method obtains a smaller Mean Square Error (MSE) value and a higher coefficient of determination (R2) value than the Principal Component Regression (PCR) method.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMulticollinearityen_US
dc.subjectPrincipal Component Regression (PCR)en_US
dc.subjectLASSO Regressionen_US
dc.subjectSDGsen_US
dc.titlePerbandingan Regresi Lasso dan Principal Component Regression (PCR) dalam Mengatasi Masalah Multikolinearitasen_US
dc.title.alternativeComparison of Lasso Regression and Principal Component Regression (PCR) in Solving Multicollinearity Problemsen_US
dc.typeThesisen_US
dc.identifier.nimNIM200803010
dc.identifier.nidnNIDN0019025604
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages65 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record