Show simple item record

dc.contributor.advisorSitorus, Syahriol
dc.contributor.authorIrawan, M Nazar Fitra
dc.date.accessioned2024-10-01T08:41:04Z
dc.date.available2024-10-01T08:41:04Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/98007
dc.description.abstractThis study aims to analyze and compare the performance of various machine learning algorithms in detecting fraud activities in the banking sector. With the increasing frequency and complexity of fraud, the need for effective detection systems becomes crucial. This study uses a dataset from an external data provider containing banking transactions labeled as fraud or non-fraud. The machine learning algorithms compared include Logistic Regression, Decision Trees, Random Forest, and Gradient Boosting. This study contributes to a better understanding of the strengths and weaknesses of various machine learning algorithms in the context of banking fraud detection. The results of this study are expected to help financial institutions select and implement the most effective machine learning solutions to minimize fraud risk. These findings also provide insights for further development in machine learning-based banking security.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectDecision Treesen_US
dc.subjectFrauden_US
dc.subjectGradient Boostingen_US
dc.subjectLogistic Regressionen_US
dc.subjectMachine Learningen_US
dc.subjectRandom Foresten_US
dc.titleAnalisis Perbandingan Performa Algoritma Machine Learning dalam Mendeteksi Fraud pada Perbankanen_US
dc.title.alternativeComparative Analysis of Machine Learning Algorithm Performance in Detecting Fraud in Bankingen_US
dc.typeThesisen_US
dc.identifier.nimNIM212406011
dc.identifier.nidnNIDN0010037104
dc.identifier.kodeprodiKODEPRODI55401#Teknik Informatika
dc.description.pages70 Pagesen_US
dc.description.typeKertas Karya Diplomaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record