Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorHajri, Humaidi Hilman
dc.date.accessioned2025-01-02T02:39:43Z
dc.date.available2025-01-02T02:39:43Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/99690
dc.description.abstractThis research aims to obtain the best model for the stock data of PT Gudang Garam Tbk. (GGRM) based on AIC and BIC values. The study utilizes secondary data from the Investing website, using daily stock data of GGRM for the past year. The initial steps involve testing data stationarity, identifying the ARIMA model, and checking for heteroskedasticity in the best ARIMA model. Subsequently, the ARCHGARCH model is identified. The study found that after modeling ARIMA for the stationary GGRM stock data, heteroskedasticity was present with a Ku=6, indicating a fat tail. Due to the presence of heteroskedasticity and fat tail, a GARCH model approach with a distribution assumption capable of handling the fat tail was applied. Considering the smallest AIC and BIC values, the best model identified is the T GARCH − Student T(1,1) with the equation o2t = 1.6986 + 0.1821 e2t-1 + 0.9020 o2t-1 − 0.1821e2t-1 It−1<0.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAICen_US
dc.subjectBICen_US
dc.subjectStock Priceen_US
dc.subjectStudent-Ten_US
dc.subjectTGARCHen_US
dc.titlePemodelan Volatilitas Harga Saham GGRM dengan Pendekatan Generalized Autoregressive Conditional Heteroskedasticity (GARCH)en_US
dc.title.alternativeModelling The Volatility of GGRM Stock Price Data Using Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Modelsen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803109
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages92 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 8. Decent Work And Economic Growthen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record