Show simple item record

dc.contributor.advisorSyahmarani, Aghni
dc.contributor.authorHertyani, Annisa
dc.date.accessioned2025-01-02T04:04:30Z
dc.date.available2025-01-02T04:04:30Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/99705
dc.description.abstractThe automorphism of a graph G is a permutation of the set of points V(G) of the graph G which is neighborhood preserving. In other words, the automorphism of a graph G is an isomorphism of the graph G to itself. One of the main points discussed in this research is the number of automorphism functions of Complete Barbell graphs. Complete Barbell (Bn,km) is a barbell-shaped graph with two identical complete graphs at the ends connected by one bridge. The research results show that the number of automorphism of the Complete Barbell graph (Bn,km) is 2(m!(m−2)!) 2 for n=2.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectBarbell graphen_US
dc.subjectComplete barbell graphen_US
dc.subjectGraphen_US
dc.subjectGraph automorphismen_US
dc.subjectGraph isomorphismen_US
dc.titleAutomorfisma Graf Barbelen_US
dc.title.alternativeBarbell Graph Automorphismen_US
dc.typeThesisen_US
dc.identifier.nimNIM200803004
dc.identifier.nidnNIDN0009128703
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages35 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record