Automorfisma Graf Barbel
dc.contributor.advisor | Syahmarani, Aghni | |
dc.contributor.author | Hertyani, Annisa | |
dc.date.accessioned | 2025-01-02T04:04:30Z | |
dc.date.available | 2025-01-02T04:04:30Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/99705 | |
dc.description.abstract | The automorphism of a graph G is a permutation of the set of points V(G) of the graph G which is neighborhood preserving. In other words, the automorphism of a graph G is an isomorphism of the graph G to itself. One of the main points discussed in this research is the number of automorphism functions of Complete Barbell graphs. Complete Barbell (Bn,km) is a barbell-shaped graph with two identical complete graphs at the ends connected by one bridge. The research results show that the number of automorphism of the Complete Barbell graph (Bn,km) is 2(m!(m−2)!) 2 for n=2. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Barbell graph | en_US |
dc.subject | Complete barbell graph | en_US |
dc.subject | Graph | en_US |
dc.subject | Graph automorphism | en_US |
dc.subject | Graph isomorphism | en_US |
dc.title | Automorfisma Graf Barbel | en_US |
dc.title.alternative | Barbell Graph Automorphism | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM200803004 | |
dc.identifier.nidn | NIDN0009128703 | |
dc.identifier.kodeprodi | KODEPRODI44201#Matematika | |
dc.description.pages | 35 Pages | en_US |
dc.description.type | Skripsi Sarjana | en_US |
dc.subject.sdgs | SDGs 4. Quality Education | en_US |
Files in this item
This item appears in the following Collection(s)
-
Undergraduate Theses [1407]
Skripsi Sarjana