Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorHutagalung, Muhammad Alfan Irsyadi
dc.date.accessioned2025-01-10T02:30:07Z
dc.date.available2025-01-10T02:30:07Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/99998
dc.description.abstractMaximum likelihood estimation (MLE) is commonly used for parameter estimation of statistical models, including multinomial logistic regression. However, multicollinearity in logistic regression limits its use. Penalized Maximum Likelihood Estimation (PMLE) overcomes this problem with a penalty on the regression coefficients, resulting in a more stable model and better generalisation. The gradient descent algorithm is used to find the MLE and PMLE solutions without dependence on the starting point. The analysis results show that PMLE has higher accuracy than MLE on the Iris datasets. On the generated dataset with 800 observations and 100 predictor variables, as well as 80 observations and 100 predictor variables, PMLE showed a significant improvement in accuracy. This shows that PMLE is effective in controlling model complexity and improving prediction accuracy, especially on datasets with many predictor variables.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPenalized Maximum Likelihood Estimationen_US
dc.subjectMultinomial Logistic Regressionen_US
dc.subjectGradient Descent Algorithmen_US
dc.subjectMulticollinearityen_US
dc.subjectPrediction Accuracyen_US
dc.subjectModel Complexityen_US
dc.titlePenalized Maximum Likelihood Estimation dengan Algoritma Gradient Descent pada Model Regresi Logistik Multinomialen_US
dc.title.alternativePenalized Maximum Likelihood Estimation with Algoritma Gradient Descent on Multinomial Logistic Regression Modelen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803102
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages84 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record